一元一次方程应用题怎么找等量关系(五年级数学《列方程解应用题》教学设计(精选5篇))

admin 2024-03-05 13:32:11 608

摘要:五年级数学《列方程解应用题》教学设计(精选5篇) 作为一名优秀的教育工作者,通常需要用到教学设计来辅助教学,教学设计是实现教学目标的计划性和决策性活动。如何把教学设

五年级数学《列方程解应用题》教学设计(精选5篇)

作为一名优秀的教育工作者,通常需要用到教学设计来辅助教学,教学设计是实现教学目标的计划性和决策性活动。如何把教学设计做到重点突出呢?以下是小编精心整理的五年级数学《列方程解应用题》教学设计,欢迎阅读与收藏。

1.初步学会列方程解比较容易的两步应用题。

2.知道列方程解应用题的关键是找应用题中相等的数量关系。

1.使学生能用方程的方法解较简单的两步计算应用题。

2.引导学生能根据解题过程总结列方程解应用题的一般步骤。

1.培养学生用不同的方法解决问题的思维方式。

2.渗透在多种方法中选择最简单的方法解决问题。

教学重点:列方程解应用题的方法步骤。

教学难点:根据题意分析数量间的相等关系。

一、铺垫孕伏

1.口头解下列方程(卡片出示)

商店原有一些饺子粉,卖出35千克以后,还剩40千克。这个商店原来有饺子粉多少千克?

(4)集体订正:解法一:35+40=75(千克)

解法二:设原来有x千克饺子粉。

答:原来有75千克饺子粉。

(5)针对解法二说明:这种方法就是我们今天要学习的列方程解应用题。板书课题:列方程解应用题

1.教学例1

商店原来有一些饺子粉,每袋5千克,卖出7袋后,还剩40千克。这个商店原来有多少千克饺子粉?

(2)提问:通过读题你都知道了什么?

(3)引导学生知道:已知条件和所求问题;题中涉及到原有饺子粉、卖出饺子粉和剩下饺子粉;原有饺子粉重量去掉卖出的饺子粉重量等于剩下的饺子粉重量。根据理解题意的过程教师板书:

(4)教师启发:等号左边表示什么?等号右边表示什么?(引导学生回答:等号左边表示剩下的重量,等号右边也表示剩下的重量,所以相等。)

(5)卖出的饺子粉重量直接给了吗?应该怎样表示?(引导学生回答:卖出的饺子粉重量没有直接给,应该用每袋的重量乘以卖出的袋数)把上面的等式改为:

原有的重量-每袋的重量卖出的袋数=剩下的重量

(6)启发学生把已知条件在关系式下面注出来。然后引导学生说出要求的问题用x表示即设未知数,教师说明怎样设未知数。

(8)让学生分组解答,集体订正时板书如下:

解:设原来有x千克饺子粉。

答:原来有75千克饺子粉。

(9)引导学生自己看118页例2上面一段话,提出问题:你能

用书上讲的检验方法检验例题1吗?引导学生自己检验。之后请

小结:列方程解应用题的关键是什么?(关键是找出应用题中相

小青买2节五号电池,付出6元,找回0.4元,每节五号电池的价钱是多少元?

(1)读题,理解题意。结合生活实际帮助学生理解付出、

(2)提问:要解答这道题关键是什么?(找出题中相等的数量关系)

(5)汇报解答过程。汇报中引导学生讲解题思路,注意照顾中差生。

(6)教师总结订正。如果发现有列:2x=6-0.4和2x+0.4=6两种

方程的,教师要引导学生比较那种方法简单,并强调用较简单的

3.学生自己学26页上面一段话,回顾上边的解题过程,总结列

方程解应用题的一般步骤,总结后投影出示:

列方程解应用题的一般步骤:

小黑板出示:商店原来有15袋饺子粉,卖出35千克以后,还剩

1.口答:列方程解应用题的关键是什么?

3.按列方程解应用题的方法步骤学生***做练习七4题,集体订正结果。

四、全课总结:

教学目的:

1、使学生学会用方程解答“已知比一个数的几倍多(少)几是多少,求这个数”的应用题。

2、使学生能根据应用题的具体情况灵活选择解题方法,培养学生主动获取知识的能力和习惯。

教学重点:

分析题中数量间的相等关系,并列方程,提高用方程解应用题的能力。

教学难点:

根据不同的数量间的相等关系,列出多种不同的方程,体会列方程解应用题的优越性。

教学准备:

课前调查老校与新校各方面的变化的数据;多媒体课件。

教学过程:

一、课前谈话激发兴趣

师:同学们,这个学期我们搬进了新的学校,你的心情怎样?

通过调查你发现新校与老校相比有什么不同?(学生自由说)

(评析:学生刚刚搬进漂亮的新校,充满了好奇,让他们课前调查,他们当然是乐开花,调查中,学生进一步地认识、了解了自己的新学校,而且用他们调查的数据作为下面的学习的材料,使学生感受到我们生活的每一个角落都有数学,我们学的是有用的数学。)

师:的确,就象同学们所说的,新校与老校相比发生了非常大的变化。

根据学生的交流选择信息出示下表:

师:你能根据上面的信息,提出数学问题吗?

师:刚才同学们给每一组信息提出了一个问题,组成了四道应用题。

(评析:突破传统的应用题的呈现方式,通过选择学生调查的信息,请学生提出问题的方式使复习题、例题和练习题整体呈现,促使学习内容在动态中生成,激活了学生的认知需求与思维热情,使其积极主动地参与到下面的学习活动中。)

1、师:下面我们看第二个题目,谁来把这个题目读一读。这道题目老师想请同学们在试着做做看。(只需列出式子)

估计学生有以下几种方法(根据学生的回答板书):

师:其实这三种方法之间也有一定的联系。有什么联系?(同桌讨论)

(2)再让学生讨论右面两种方法,根据这两个算式的计算结果,学生很容易发现其中一种肯定是错误的。

让学生充分地发表自己的意见,并随机出示线段图帮助学生进一步地理解。

师:请同学们任意选择一种方法把它计算出来。指名板书。

2、师:解答好了,接下去还要做什么?(学生检验并交流)

师:这道题用算术方法和方程都可以解。谁来说说你喜欢用哪一种方法?为什么?

师:第1题为什么用算术方法解?(学生充分交流)

师小结:通常我们用方程来解象第2题这样的应用题。

揭示课题:列方程解应用题。

师:谁来评一评他做得怎么样?

师:谁来说说第4题和第2、第3题有什么不同?

(评析:力求让学生去发现和概括出规律性的知识,无论在体会列方程解应用题的优越性,还是在多种方法的择优上,等等,都尽量让学生充分地体验,使学生在分析、对比中,探索规律,不仅拓宽了学生的思维空间,更体现了学生的数学学习活动是一个生动活泼、主动的和富有个性的过程。)

师:通过同学们的计算,我们又获得了一些有关老校与新校的信息,请同学们再把我们新校与老校的有关数据比较一下,你有什么感受?或者想说些什么?

8、通过刚才的练习,你觉得解答我们今天学习的这类应用题的关键是什么?

(评析:通过总结,学生进一步明确了找关键句中的等量关系是解题的关键;通过比较,学生进一步地感受到新校和老校相比发生了巨大的变化,激发了学生发自内心的爱校之情,激励学生珍惜优越的学习环境,努力学习。)

过渡:老师这里有这样的一些关键句,请你根据这些句子说出等量关系式。

1、找等量关系(课件出示)

2、任意地选择两个条件,提出一个问题,组成一道应用题,然后把它解答出来,看谁做得又快又多。

师:指名问学生几岁?×××同学的年龄是我女儿的3倍少1岁,猜猜我的女儿几岁?

请同桌两人做这个游戏,利用你爸爸、妈妈或其他人的年龄编题,让你的同桌猜一猜。

(评析:采用分层练习,力求在练习过程中,既巩固新知,又发展学生的数学思维,使学生在发散性、多维度的思维活动中提高解决实际问题的能力,培养学生的创新意识。)

教学内容:

教学目标:

1、进一步理解掌握列方程解应用题的方法,会列方程解有关逆思考的图形计算问题。

2、在经历用算术与方程两种方法解逆思考几何应用题的对比中,体会方程思想对于此类应用题的思维优势。

3、能自觉地运用所学知识灵活地、创造性地解决简单的实际问题,使学生对列方程解应用题产生较良好的情绪体验。

教学重难点:

教具准备:

教学预设流程:

一、学前复习:

1、列方程解应用题的一般步骤是什么?关键是什么?

3、解决问题:一个三角形的面积是100平方厘米,底25厘米。高是多少厘米。(投影出示)

二、导入新课,揭题:列方程解有关图形计算的应用题。

三、探究新知:

1、教学例3。

2、小结:谈谈你用方程和算术方法分别解这道题后的感受。

1、第111页做一做。

2、(投影出示)一根铁丝可以围成一个边长4厘米的正方形,如果把这根铁丝围成一个宽3厘米的长方形,这个长方形的长是多少?(你还能提出什么数学问题?得出什么数学结论?)

4、如图,已知梯形面积是19.5平方厘米,平行四边形的面积是15平方厘米。求图中x和y。

1、说说你的学习收获和感受。

2、作业:

②、选作题:两个完全相同的直角梯形可以拼成一个面积是36平方厘米的长方形,如果梯形上底是9厘米,下底是11厘米。高是多少?

一、教材分析:

列方程解应用题是初中数学教学的重要内容,它既是重点也是难点,在解各种类型的方程或方程组时,都要进行由相应的应用题如何列出这些类型的方程或方程组这一步,这是因为它既是数学联系实际的一个重要方面,又是培养学生分析问题、解决问题能力的一个主要环节。按课本安排出租车计费的内容应放在第一节课与劳力调配问题一起讲,但学生进入中学以来第一次接触“列方程解应用题”,本身接受就有一定困难,如果放到第一节一下讲两个类型,学生更接受不了,练习册中又出现了计算水费问题,也需要进行分段计算,于是,我把这类分段计算的问题单作为一节课,作为一个类型去讲。

二、教学目标:

根据新课标的要求,及七年级学生的认知水平我特制定本节课的教学目标如下:

1.学会列一元一次方程解决水费和出租车计费问题;

2.通过分析出租车计费、水费中的数量关系,经历运用列方程的方法解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。

5.体会数学来源于生活,来源于实践,又服务于生活,认识到学习数学的用处,增强学习数学的目的性和用数学的意识;增强节约用水的意识。

三、教学重难点的确定:

教学重点是:列一元一次方程解决水费和出租车费的应用题。

教学难点是:如何分析问题,挖掘题目中的等量关系。

四、学情分析:

1、知识掌握上,七年级学生刚刚学习了一节“列方程解应用题”,对列方程解应用题的优越性还没有充分体验到,还停留在愿意用小学的算术方法解应用题上。

2、学生学习本节课的知识障碍。对于列方程解应用题的方法不太理解,因为这些题,学生用算术方法很快就能算出来。所以老师要用找相等关系的方法引导学生列出方程去解。

3、由于我所教两个班的学生好动,爱发表意见,希望得到老师的表扬等特点,所以在教学中,一方面用《北京日报》的报道引入课题,引起学生的兴趣,使他们注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

五、教学策略:

学生有时不明白学数学有什么用,本节内容正好与实际联系特别紧密。为了使课堂生动、有意义,我以《北京日报》中的一段报道引出本节课要解决的问题,引起学生兴趣,本节课中水价的计价规定,属于**行为,目的是提倡节约用水,正好与现在我们大力提倡节约每一滴水联系起来,起到寓教的作用。例2是与水费计价类似的出租车计费问题,也是与学生实际联系特别紧密的应用题。这两个例题学生都非常感兴趣,选择这两个例题,课堂上可充分调动学生的积极性,让他们利用生活中的经验来分析题目,使学生体验到数学与我们的生活联系得是那么紧密,生活中离不开数,数学来源于生活,反过来又应用于生活,认识到学习数学的用处,增强学习数学的目的性和用数学的意识。激发学生学习数学的愿望。

六、教学程序设计:

(一)引用报纸上的报道引出本节课的课题。引用《北京日报》的关于“北京市水资源匮乏”、“北京市一年漏掉的水相当于新建一个自来水厂全年的产量”的报道,使学生将注意力集中到课堂上,“水资源和数学有什么关系?”等问题会充斥很多学生的脑海。于是,我首先问学生:“北京这么缺水,我们应该怎样做?”学生们说出:“应节约用水”、“节水应从我做起”等等。“作为我们每一个公民应节约每一滴水,从**的角度来讲,应采取一些措施,鼓励居民节约用水。有些城市就采取了阶梯式水价,如果北京市也采取这种收水费的方式你会计算自家的水费吗?”引出例1。

讲解例1时,首先让学生认真读题,明确水费怎样计价,引导学生说出“分段计价”,再问学生按不同的单价计价的水量应怎样表示,尤其是超出标准水量如何表示是关键。分析后,列出表格,让学生填表,从而全面地对例1作出了分析,找出列方程的依据——题目中的相等关系。通过这种分析的方式,让学生体会到分析应用题要分析“问题中都涉及了哪些量?”、“哪些是已知量、哪些是未知量?”、“如何表示已知量和未知量?”“题目中的相等关系是什么?”,列表分析使各个量之间的关系更明确,学生易于接受,这种方法能够帮助学生正确地分析问题,从而列出方程,解决问题。整个分析过程作完后,让学生自己写出整个解题过程,并展示学生的解题过程,从而规范解题格式。

例2是出租车计费问题,因为出租车计费也同样需要分段计算,类似于例1,于是我主要让学生自己去分析,然后老师再根据出现的问题进行指导。两个例题解决后,引导学生根据例题的解决过程总结出“列方程解应用题的一般步骤”。

为巩固本节的教学重点让学生***完成:练习册P59/1,这个题还是一个分段计价的计算水费的问题。

本节课的课堂小结设计了两个问题:

1、本节课我们共同研究的问题是什么?他们的共同点是什么?(共同点:由于单价的变化,必须要分段计算。)

2、通过本节课学习,你懂得了什么?有什么收获?目的是让学生说出自己本节课的收获与体会。我的愿望是让学生说出知识上的收获和节水意识上的收获。

(五)布置作业。为面向全体学生,安排如下:

1、全体学生必做课本P119/2、P134/10

2、布置一个选做题(分三段计价):乘某市的出租车起价10元(即行驶4千米以内都需付10元车费),达到或超过4千米以后,每增加1千米加价1.2元(不足1千米的部分按1千米计算)。超过15千米,加收50%的空驶费。现在小红乘这种出租车从甲地到乙地,支付车费34元。求甲、乙两地之间的路程大约是多少?

总之,我在教学过程中,能够注意发挥学生的主体作用,让学生通过自主探究、体验分析问题的全过程,真正掌握列方程解应用题分析问题的方法。我认识到教师不仅要叫给学生知识,更要注重培养学生良好的数学素养和学习习惯,让学生学会学习。

1.通过复习,使学生能够运用所学知识,采用列方程的方法解答应用题.

2.通过复习,使学生能够准确的找出题目中的等量关系及发现生活中的等量关系,总复习:列方程解应用题。

3.培养学生的分析以及综合能力.能够从不同角度解决同一个问题.

4.通过调查数据和利用数据,使学生在现实情境中体会到数学与现实生活的密切联系。

调查表的各项内容,学生需提前一天认真调查,填写。

教学过程:

一、创设情境:

我也是洋里中心校毕业的,我很愿意与同学们交朋友,交朋友应相互了解,比如,我知道班长林端13岁,体育***江莹莹14岁,你们猜猜,陈老师今年有多少岁?

1、理一理,复习列方程解应用题的一般步骤及关键。

(1)让我用应用题的方式告诉你们:班长林端13岁,体育***江莹莹14岁,他们岁数之和是陈老师的,陈老师今年多少岁?(板书)

(2)你能用方程方法解答这一题吗?(反馈)今天,我们将通过了解陈老师,一起交朋友的办法来复习列方程解应用题。(板书课题:总复习:列方程解应用题)

(3)过渡:结合解的过程,回忆一下,列方程解应用题有哪几个步骤,并写在笔记中。

(4)反馈:谁来说说?(师简单板书各步。)哪一步是列方程解应用题的关键?(划出第二步)

(5)过渡:列方程解应用题的关键是找数量间相等关系,等量关系找到了,问题就迎刃而解了,陈老师有多个找等量关系的绝招,这些绝招就隐藏在陈老师的“自我介绍”中。

副班长体重35千克,比陈老师体重的多5千克,陈老师体重多少千克?

陈老师爱好种花,去年种了一批,大旱后死了三分之一,过冬时又死了6棵,最后还剩10棵,求去年种了多少棵?

陈老师家门口有一长方形的鱼塘,周长24米,长7米,那宽多少米?

陈老师节约用钱,去年还存了5000元,存期一年,利率2,今年取款时银行应多付我多少元?

(2)生逐题回答等量关系,师生共同小结:找等量关系可以根据什么去找?(根据关键句或重点词句找等量关系;按照事理以及根据事情发展感变化的情况找等量关系;利用常见的数量关系和计算公式找等量关系,小学数学教案《总复习:列方程解应用题》。)

板书:1,关键字词。“比”“是”“多”“少”

(4)利用等量关系解答各题。(提醒学生注意第四题的要求)---想想用方程解容易还是算术解容易,拣容易的方法做。

(6)比较等量关系中的未知数位置,自主发现最后一题的未知数单独在等号的另一端,所以用算术解容易,而其余各题的未知数与已知数混在一起,用方程解较容易。

(7)第一题你还可以列出什么方程?等量关系是什么?

(8)你认为哪种方程最容易想?(小结:对了,一道题可以列出多种方程,我们要选择最容易想的方程。)

(9)过渡:其实,找到等量关系后,这些应用题都可以用算术方法解,比如就第一题算术方法怎样解?谁会分析?(领会等量关系中未知数与已知数混在一起的,通过进一步分析后,也可找到算术解,即逆向思考,较困难,看来,遇到需逆向思考的问题时,用方程解比用算术方法解更容易想一些)

3、比较用方程解和用算术方法解的不同及其本质。

(1)先观察这一题的方程解法和算术方法解法,然后回忆一下,再四人小组讨论并合作填写下表:

4、小结过渡:

(1)小结:今天复习了什么?你有什么收获?

(2)刚刚通过了解老师复习了列方程解应用题,下面要进行练习与提高了,陈老师很想通过了解同学们的方式进行,行吗?

三、练习拓展:

1、拓展、开放性练习

(3)同学们已经搜集了很多自己的数据,要求同学们也得学着老师,用应用题的方式介绍自己。

(4)请每组选择本组的数据编一道应用题,要力争让同学们选自已的题目去做,不能太难,也不能太容易,具体请看要求。

1、每前后4人一小组,由小组组长负责;

3、看看哪一小组的题目具有现实性、挑战性、新颖性,完成速度快。

2、了解学校和社会,应用性、提高性练习:

我校学生610人,其中女生约占48,我乡最高峰是莲花峰,海拔1200米,比泰山矮,我乡总人口,约占全县人口的,

练习:(间接设x)我县的东南汽车厂去年上半年完成了全年计划产量的,下半年又生产了43000辆,实际全年超产了,求东南汽车厂去年生产了几辆汽车?

【五年级数学《列方程解应用题》教学设计】相关文章:

初一一元一次来自方程等量关系怎么找应用题怎么列方程找

怎样找等量关系同学们在列方程解应用题时,总感觉方程比较难列.其实列方程解应用题的关键是找出等量关系,找出等量关系,方程也就可以列出来了.那么怎么找等量关系呢?(1)抓住数学术语找等量关系应用题中的数量关系:一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍”等术语表示.在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程,例如:“学校开展植树活动,五年级植树50棵,比四年级植树棵数的2倍少4棵,四年级植树多少棵?”这道题的关键词是“比……少”,从这里可以找出这样的等量关系:四年级植树棵数的2倍减去4等于五年级植树的棵数,由此列出方程2x-4=50.(2)根据常见的数量关系找等量关系常见的数量关系:工作效率×工作时间=工作总量;单价×数量=总价;速度×时间=路程……,在解题时,可以根据这些数量关系去找等量关系.例如:“某款式的服装,零售价为36元1套,现有216元,问一共可以买多少套衣服?”根据“单价×数量=总价”的数量关系,可以列出方程36x=216.(3)根据常用的计算公式找等量关系常用的计算公式有:长方形面积=长×宽;可以根据计算公式找等量关系.例如:“一个长方形的面积是19平方米,它的长是4米,那么宽是多少米?”根据长方形面积的计算公式“长×宽=面积”,可列出方程4x=19.(4)根据文字关系式找等量关系例如:“学校五年级一班有36人,二班有37人;一、二、三班共有108人,那么三班有多少人?”此题用文字表示等量关系是:一班+二班+三班=总数一班+二班=总数-三班一班+三班=总数-二班二班+三班=总数-一班根据这些文字等量关系式,可列出以下方程,如:36+37+x=10836+37=108-x36+x=108-3737+x=108-36(5)根据图形找等量关系例如:“某农场有400公顷小麦,前三天每天收割70公顷小麦,剩下的要在2天内收割完,平均每天要收割小麦多少公顷?”先根据题意画出线段图.从线段图上可以直观地看出:割麦总数=前3天割麦数+后2天割麦数.根据这个关系式,可列出方程70×3+2x=400.

如何找一元一次方程应用题的等量关系式

(1)抓住数学术语找等量关系应用题中的数量关系:一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍”等术语表示.在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程,例如:“学校开展植树活动,五年级植树50棵,比四年级植树棵数的2倍少4棵,四年级植树多少棵?”这道题的关键词是“比……少”,从这里可以找出这样的等量关系:四年级植树棵数的2倍减去4等于五年级植树的棵数,由此列出方程2-4=50.(2)根据常见的数量关系找等量关系常见的数量关系:工作效率×工作时间=工作总量;单价×数量=总价;速度×时间=路程……,在解题时,可以根据这些数量关系去找等量关系.例如:“某款式的服装,零售价为36元1套,现有216元,问一共可以买多少套衣服?”根据“单价×数量=总价”的数量关系,可以列出方程36=216.(3)根据常用的计算公式找等量关系常用的计算公式有:长方形面积=长×宽;可以根据计算公式找等量关系.例如:“一个长方形的面积是19平方米,它的长是4米,那么宽是多少米?”根据长方形面积的计算公式“长×宽=面积”,可列出方程4=19.(4)根据文字关系式找等量关系例如:“学校五年级一班有36人,二班有37人;一、二、三班共有108人,那么三班有多少人?”此题用文字表示等量关系是:一班+二班+三班=总数一班+二班=总数-三班一班+三班=总数-二班二班+三班=总数-一班根据这些文字等量关系式,可列出以下方程,如:36+37+=10836+37=108-36+=108-3737+=108-36(5)根据图形找等量关系例如:“某农场有400公顷小麦,前三天每天收割70公顷小麦,剩下的要在2天内收割完,平均每天要收割小麦多少公顷?”先根据题意画出线段图.从线段图上可以直观地看出:割麦总数=前3天割麦数+后2天割麦数.根据这个关系式,可列出方程70×3+2=400.

如何找解一元一次方程应用题题中的等量关系

这个没有确定的你想要的“方法”,你需要好好审题,也许是我做题习惯的问题,我每次做题的时候很容易就找出等量关系,这个还是需要多做题给你一个小技巧:从后往前推,从需要求的量往回推比如:要得到这个量,需要哪两个或哪几个量,如果这个量已知,就放上去,如果未知,那把这个量也去分析,需要哪些量,一直推到X就行,尤其是一元一次方程,这是最简单的方程,你这样推肯定没问题或者,你可以去找某个量的两种表示方法,这个量可以这样表示,也可以那样表示,然后中间划上等号,方程揪出来了总之还是多做练习题吧,题做的多了,感觉自然就来了

巧找等量关系 列方程解应用题(全文)

摘要:列方程解决简单实际问题是一元一次方程这一单元的教学难点,主要表现为寻一找等量关系的困难,而寻找等量关系却正是解应用题的关键。本文将提供几种常用的找等量的关系的巧妙方法,旨在帮助学生快速找到等量关系,列出方一程,完成解题。

关键词:等量关系、关键语句、不变量、公式定理、比列、数形结合、数学思想

列方程解应用题要做到“一读、二找、三列、四解、五检验、六答、”。“一读”就是读懂题意,确定哪个未知量用x表示;“二找”就是找准主要一等量关系;“三列”就是根据找到的等量关系列方程;“四解”就是解方程,求出未知数x的值;“五检验”就是把x的值代入原方程,看方程左右两边是否相等;“六答”就是写出答案。在这六步中,“二找”,也就是找准主要等量关系非常重要,是方程解应用题的关健。列方程解应用题问题时,比较困难的一环常常是同学们不知

如何着手去找等量关系。又由于应用问题类型繁多,等量关系千变万化,什么工程问题,行程问题,浓度问题,等等。那么根据什么原则来找出应用问题中的等量关系、列出方程呢?下面我根据多年从教总结出来的经验来谈谈以下几种找等量关系的途径,供同学们参考。

一、根据关键字或关键词找出具有相等关系的语句直接写出等量关系

经常见到的具有相等意义量的词有:是、比、当然,像“一样”“相等”“同样”等直观意义的词更容易找出。正确分析这些关键词所表示的具体含义是找出等量相等关系的关健。

列1:甲队有32人,乙队有28人,如果要使甲队人故是乙队人数的2倍,那么需从乙队抽调多少人到甲队?

分析:在本题中抓住“是”字便可发现相等关系:抽调后甲队人数=抽调后乙队人数×2,即这个“是”字便充当了等号的角色。

评注:在解答应用题时,若题目中出现诸如“几倍、共、多、少、快、慢、提前、超过、增加、相差”等关键词语时,应抓住它们进行分析,以使相等关系显现出来。

我们学过的公式或定义式有许多,如:时间×速度=路程,单价×数量=总价,工作效率×工作时间=工作总量等,以及大量的面积、周长、体积计算公式。但是,单单掌握这些还不够,我们要学会“举一反三”,由每个公式都能退出它的任意两种变形式,如由公式:时间×速度=路程,应能退出:路程÷时间=速度,路程÷速度=时间,这样我们才能说真正掌握了这个公式。

例2:商店对某种商品调价,按原价的8折出售,此时商品的利润率是10%,此商品的进价为1600元,商品的原价是多少元?

分析:根据公式,商品利润率=商品利润÷商品进价,

可得相等关系:10%=调价后的利润÷1600.

评注:解答应用题时,要注意分析找出不变量,即相等变量,如:两人由两地同时出发相向而行,相遇前的时间相等;等体积变形种的体积不变。

例3:初一2班第一小组同学同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩9个,若每人5个还有一个人分4个,试问第一小组有多少同学,共摘了多少个苹果?

分析:再次问题中苹果总数是不变的量,设第一小组x个学生那么苹果数目可以用(3x+9)表示,也可以用5x-(5-4)来表示。从而可以得出变量关系

评注:此方法常用于解决方案类型的题目,题中明显的关键词为“若”(或它的同义词)。此类题一般有两套方案,不同方案中大部分数据也不同,而我们要做的就是找出在两种方案中没有变动的数据,也就是不变量,从而列出等量关系。类似的题型还有年龄差问题(抓住年龄差不变),往返问题(抓住往返行程不变)等,请大家自己多加归纳总结。

中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数于形是有联系的,这个联系称之为数形结合。数形结合就是把抽象过的数学语言,数量关系与直观的几何图形,位置关系结合起来,通过“以形助数”或“以数解形”,即通过抽象思维与形象思维的结合,可以使复杂的问题简单化,抽象问题具体化,从而起到优化解题途径的目的。初中学习的“形”,暂时只涉及平面图形而我们解应用题所要用到的“形”一般是线性示意图。

例4:小明与小兵家分别在相距20km的甲、乙两地,星期天小明从家里出发骑自行车去小兵家,小明骑车的速度为13km/h。两人商定30min后,小兵从家里出发骑自行车去接小明,小兵骑车的速度是12km/h。那么小兵要骑车多久才能与小明相遇?

分析:根据题意设小兵要骑车xh才能与小明相遇,画示意图如下。

那么,很容易就可以从图上看出等量关系:

小明先走的路程+小兵出发后小明走的路程+小兵走的路程=甲乙两地的距离

评注:由上题可以看出,利用示意图可以很方便解决类似于行程方面的问题,当然我们以后将要学习的韦恩图也可以很好的用来解决有关集合方面的应用题。

在小学,学生就已经解除了比例,当然小学所学的比例全是正比例,也很少将其直接用于解应用题,因为正比例只有在结合几何图形时才能真正发挥出它的“威力”。由于学生暂时还没有深入学习几何知识,我们先看下正比例在代数方面的应用。

例5:已知制成腊肉的重量与所需鲜肉的重量成正比例。现已知6kg鲜肉可以制成5.25kg腊肉,那么18kg鲜肉可以制成多少千克腊肉呢?

分析:因为知道制成腊肉的重量与所需鲜肉的重量成正比例,那么我们没必要算出每kg鲜肉可以制成多少腊肉,只需了解两次制腊肉过程都符合同一正比例。

由此设可以制成xkg腊肉,由正比例知识有:

正比例方法在以后的几何学习中将会频繁的用到,届时涉及到的图形比例的有关应用题都可以用它来解决,如影子问题,测量问题等等。熟练掌握它来解题,将会受到事半功倍的效果。

方程是刻画现实世界中数量相等关系的模型。有了这些寻找等量关系的累计,学生会越来越灵活地根据具体的问题情境,寻找相应的等量关系,并能举一反三,在等量关系“多样化”的基础上,实现方法的“优化”。当然,确定等量关系的方法不止以上几种,我们在学校时要注意总结,力争找到更多更好的方法。

【2】《2008云南中考抢分计划一本通》主编檀木吉林人民出版社马复

【3】《全能学练》主编黎启阳华东师范大学出版社沈呈民

时间:2022-08-2907:12:42

被举报文档标题:巧找等量关系列方程解应用题

13882551937、13808266089 服务时间:8:00~21:00 承诺一小时内删除

初一数学一元一次方程解应用题如何找等量关系

跟据已知条件来找,有时偶尔会用到生活中的常识建立等量关系.数学是一门实用性很强的科目,这就意味着你可以在生活中找到题目的原型,这有利于你建立数学模型,模型建得越多,找等量关系越容易,等到达了一定的境界便可无招胜有招了

一元一次方程应用题怎样找等量关系

数量关系式每份数×份数=总数总数÷每份数=份数总数÷份数=每份数速度×时间=路程路程÷速度=时间路程÷时间=速度单价×数量=总价总价÷单价=数量总价÷数量=单价工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率加数+加数=和和-一个加数=另一个加数被减数-减数=差被减数-差=减数差+减数=被减数因数×因数=积积÷一个因数=另一个因数被除数÷除数=商被除数÷商=除数商×除数=被除数折扣=现价÷原价原价=现价÷折扣现价=原价×折扣纳税:税率=应纳税款÷总收入应纳税款=总收入×税率收入=应纳税款÷税率利息:利率=利息÷本金利息=本金×利率×时间利息税=利息×税率(5%或20%)税后利息=利息—利息税本息=本金+利息(税后利息)相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数

一元一次方程应用题中该如何找等量关系?

对于初一同学来说,一元一次方程是一道坎,尤其是列一元一次方程解应用题又是同学们从小学升到初中之后,第一次用代数的方法解决处理应用题。因此,学好本块知识,对初中同学学习后面的相关知识来说,具有非常重要的意义!

而列方程的重中之重就是“寻找等量关系”,此处是不少同学的拦路虎,下面我们通过一些例题给大家讲解一下,希望对大家能有帮助! 

【例1】小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同。2月份、5月份他的跳远成绩分别为4.1m,4.7m。请你算出小明1月份的跳远成绩以及每个月增加的距离。

【分析】此题可以通过题目所给的条件寻找等量关系,“每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同。”所以,根据题意,就可以找到等量关系:

2月份跳远距离-  每月增加的距离=1月份跳远距离

2月份跳远距离 + 每月增加的距离*3=5月份跳远距离

这样,根据列出来的等量关系,你能列方程了么?

【例2】为有效开展阳光体育活动,某中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分。已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?

【分析】本题需要根据题目条件寻找等量关系,“8场比赛中得到13分”,所以,可以列出等量关系:

胜+负=8

胜*2+负*1=13

根据此等量关系,即可列方程求解了!

【例3】用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)。

A方法:剪6个侧面; B方法:剪4个侧面和5个底面。

现有19张硬纸板,裁剪时x张用A方法,其余用B方法。

(1)用x的代数式分别表示裁剪出的侧面和底面的个数;

(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?

【分析】此题根据已有常识加上左边的三棱柱的图形,可以知道,一个三棱柱由2个底面加3个侧面构成,所以,要想裁剪出的侧面和底面恰好全部用完,必须底面与侧面的比值是2:3的关系才行,所以,列出等量关系:

底面的个数:侧面的个数=2:3

由此可以列出方程式了。

这个就需要同学们在做题时常总结了,比如,行程问题,行船问题,工程问题,利润问题,打折问题等等,了解到这些等量关系之后,再根据题意即可寻找,并列出方程来。这种问题考察的比较多,还请同学们好好理解。

【例4】某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售。请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?

【分析】根据已有的利润问题的等量关系,我们可以知道:利润=售价-进价;利润率=利润/进价,所以根据这两个等量关系,再加上题目中的叙述,我们就可以找到本题中的等量关系了:

所有衣服销售收入=进价+利润=进价(1+利润率)

所以,设降价x元,方程可以是,

120*400+(120-x)*100=80*500*(1+45%)

你明白了吗?

【例5】小明坚持长跑健身,他从家匀速跑步到学校,通常需要30分钟。某周日,小明与同学相约早上八点学校见,他七点半从家跑步出发,平均每分钟比平时快了40米,结果七点五十五分就到了学校。求小明家到学校的距离。

【分析】这道题目属于行程问题,我们已经知道:速度*时间=路程,所以根据此等量关系,再加上题目意思,就可以列出等量关系:

现在的速度-平时的速度=40米/分钟,

所以,如果设从家到学校的距离是x米的话,那么方程可以是:

x/25-x/30=40,

你明白了吗?

关于一元一次方程应用题,还会有其他的解题方法,但万变不离其宗,只要常见的等量关系能掌握,并能准确理解题意,等量关系就不难找啦~

一元一次方程五大必考题型总结及试题练习

1、什么?昼锦期中考试难点基本都是原题?你还不快点来看看!

2、从五中、八中(飞翔)期中考试,看七年级数学命题方向!

3、致安阳所有初一阶段还没找准方向的孩子

4、2017年中原培优寒春招生简章!快来报名吧~

重要通知

中原培优寒春入学测试开始了!

欢迎各位同学、家长报名参加!

第一轮新生测试已结束,

第二轮还有少量名额,

更多学习方法及教学视频指导

回复“试卷”查看五中等名初期中真题

[如果你觉得这篇文章帮到了你,分享就是最好的鼓励]

- END -

找等量关系列方程的技巧,看了这个,应用题再也难不倒你!

寻找相等关系是列方程解应用题的关键步骤。列一元一次方程解应用题,首先要根据题意及题中的数量关系,找出能够反映应用题全部含义的一个相等关系,然后再设未知数布列方程求解。对于条件表达不够明确的应用题,可用如下的方法寻找相等关系。

一、动态问题静止看

静态的问题是指题中关系对应的量处于相对稳定的状态,而动态的问题则是指题中条件所表达的是不断变化的相等关系,对于这类问题,要善于在动中取静,以静制动。

例1.运动场的跑道一圈长400m,甲练习骑自行车,平均每分钟骑350m,乙练习跑步,平均每分钟跑250m.两人从同一处同时反向出发,经过多长时间首次相遇?

分析:甲、乙两人出发后,所走过的路程、时间都在发生变化,但跑道的长度是固定不变的,是一个静态量,首次相遇即甲与乙走的路程和为400m,据此,可布列方程求解.

设两人经过x分首次相遇,根据题意,得

350x+250x=400.

解得x=,即经过分两人首次相遇.

二、变化之中找不变

许多问题情景是在不断变化的,但在变化的问题情景中,肯定存在着不变量,找到这个不变量,我们就可以次为相等关系布列方程.

例2.某校组织师生春游,若单独租用45座的客车若干辆,则刚好坐满;若单独租用60座的客车,则可以少租一辆,且空余30个座位.试问该校有多少人参加春游?

分析:无论采用哪种租车方式,该校参加春游的人数是不变的,故可以此为相等关系,即租45座客车的坐车人数=租60座客车的坐车人数,采用间接设元的方法布列方程求解.

设租45座客车x辆,则租60座客车(x-1)辆,根据题意得

45x=60(x-1)-30,解得x=6.

于是45x=45×6=270(人).

即该校参加春游的人数是270人.

三、隐含条件摆“桌面”

显性的相等关系是指根据所给的条件及所学的公式、性质、定律等一目了然就能看出的相等关系,而隐性的相等关系则是指问题中有一些隐含的条件,这类条件如果不认真去挖掘、分析,摆到“桌面”上,就不能清晰地看出其中的相等关系.

例3.哥哥对弟弟说:“当我像你这么大年龄时,你才3岁,而当你到了我现在的年龄时,我就24岁了”根据以上对话,你能算出兄弟两人现在的年龄吗?

分析:此题初看似乎没有明显的等量关系可寻,但生活经验告诉我们,年龄问题中隐含着的条件是“要长都长”,也即兄弟两人的年龄差不变.据此条件,并借助于线段图,可知题目蕴藏着的等量关系是:3×年龄差=24-3.

设兄弟两人的年龄差为x岁,根据题意,得

3x=24-3,解得x=7.

于是弟弟的年龄为3+7=10(岁),

哥哥的年龄为24-7=17(岁).

四、虚实相生关系现

在应用题中,除了有实实在在的条件外,有时还要人为地虚构一些条件,来帮助我们去寻找相等关系而解题.例如设辅助未知数(又称参数),它在题目的条件中没有给出,在解答的结果中也不存在,但正是这些虚拟的条件,却起到了“桥梁”的作用,能快速地渡我们过河.

例4.某超市在“十一黄金周”期间为了促销一批库存的商品,先将该商品提价20%,然后再打折销售,为了使该商品打折后与调价前的销售价格相同,问该商品应按几折销售?

分析:此题要求“该商品按几折销售”,但题目中没有直接给出涨价后的价格,由题意知,涨价后的价格与原标价有关系,若将原标价设为a元,进而可将涨价后的价格表示出来,使得题目中的数量关系明朗化,根据提价并打折后销售价格与原标价相等,即可列出方程.

设该商品的原标价为a元,提价20%后应按x折销售,

根据题意,得(1+20%)a=a.

解得x=8.5,即该商品应按八五折销售.

小学用方程解应用题是一个重要的考察点,也算是一个难点,这一部分内容融入了等式的性质,以及四则运算各部分的关系,所以我们在平时的练习中就要注意了。在此,小编给同学们介绍一些解题技巧,或许会收获不小哦!

一、首先是审题,确定未知数

审题,理解题意。就是全面分析已知数与已知数、已知数与未知数的关系。特别要把牵涉到的一些概念术语弄清,如同向、相向、增加到、增加了等,并确立未知数。即用x表示所求的数量或有关的未知量。在小学阶段同学们遇到的应用题并不十分复杂,一般只需要直接把要求的数量设为未知数,如:“学校图书馆里科技书的本数比文艺书的2倍多47本,科技书有495本,文艺书有多少本?”在这道题目中只有“文艺书的数量”不知道,所以只要设“文艺书的数量”为未知数x就可以了。

二、寻找等量关系,列出方程是关键

“含有未知数的等式称为方程”,因而“等式”是列方程必不可少的条件。所以寻找等量关系是解题的关键。如上题中“科技书得本数比文艺书的2倍多47本”这是理解本题题目意思的关键。仔细审题发现“文艺书本数的2倍加上47本就是科技书的本数”故本题的等量关系为:文艺书本数的2倍+47=科技书的本数。上题中的方程可以列为:“2x+47=495”

三、解方程,求出未知数得值

解方程时应当注意把等号对齐。如:2x+47=495

2x+47-47=495-47←应将“2x”看做一个整体。

2x=4482x÷2=448÷2x=224

四、检验也是列方程解应用题中必不可少的

检验并写出答案.检验时,一是要将所求得的未知数的值代入原方程,检验方程的解是否正确;二是检查所求得的未知数的值是否符合题意,不符合题意的要舍去,保留符合题意的解.

1)将求得的方程的解代入原方程中检验。如果左右两边相等,说明方程解正确了。如上题的检验过程为:

检验:把x=224代入原方程。

左边=2×224+47右边=495

=495

因为左边=右边,所以x=224是方程2x+47=495的解。

2)文艺书本数的2倍+47=科技书的本数

将224代入以上等式,等式成立。故所求得的未知数的值符合题意。

总之,以上几点技巧都是列方程解应用题的关键环节的技巧,只要大家利用这些技巧加强练习,就一定能闯过列方程解应用题这道关。在千变万化的应用问题中,我们若能抓住以上几点,以不变应万变,则问题就可迎刃而解

常见错题解析:

一、把算术解法当作方程解法的错误

例1:两袋大米,甲袋重65千克,乙袋重45千克,要使两袋大米的重量相等,应从甲袋里取出多少千克放入乙袋?(用方程解)

错解:设应从甲袋里取出大米x千克放入乙袋,根据题意列方程:x=(65-45)÷2,x=20÷2,x=10。

分析:以上计算并无错误,但不符合利用方程求解的意义和要求。这种解法虽然也含有未知数,但实际上是一种算术方法。纠正的方法是把未知数设为x,暂时把未知条件当成已知条件,使未知条件与已知条件处于同等的地位,然后找出等量关系列方程。这样做比起用算术方法解容易得多。

正确解法:设从甲袋取出x千克大米放入乙袋,根据题意列方程:65-x=45+x,65-2x=45,2x=65-45,x=10答:应从甲袋取出大米10千克。

点评:本题主要考查同学们对简易方程基本知识的掌握程度,以及运用“等量”关系列方程和解方程的基本技能。有的同学由于受算术方法解应用题的思维定势的影响,所以会出现上面的错误解法。

二、等量关系的错误

例2:学校分苹果,五年级老师分50千克,比四年级老师分的2倍少2千克。四年级老师分多少千克?

错解:设四年级老师分x千克,列方程得:2x+2=50,2x=48,x=24。

分析:本题在列方程时把等量关系弄错了,误认为四年级老师的2倍加上2千克就等于五年级老师分的。

正确解法:设四年级老师分x千克。2x-2=50,2x=52,x=26。答:四年级老师分26千克。

三、单位不统一的错误

例3:梯形的面积是24平方厘米,高为4厘米,下底比上底多0.6分米,求梯形的上底。(用方程解,注:梯形面积=(上底+下底)×高÷2)

错解1:设梯形的上底是x分米(x+x+0.6)×4÷2=24,2x+0.6=12,2x=11.4,x=5.7。答:梯形的上底是5.7分米。

错解2:设梯形的上底是x厘米,(x+x+0.6)×4÷2=24,2x+0.6=12,2x=11.4,x=5.7。答:梯形的上底是5.7厘米。

分析:此题错在没有统一题中各个量的单位。题中告诉的面积单位为平方厘米,高是厘米,下底却是分米,如果不加以统一,所列出的就不是等式,也就不能恒等变形。所以我们在列方程时首先要将题中的单位统一起来。

正确解法:0.6分米=6厘米。设梯形的上底是x厘米(x+x+6)×4÷2=24,2x+6=12,2x=6,x=3。答:梯形的上底是3厘米。

四、设句不写单位名称的错误

例4:粮仓要运进250吨粮食,已经运了8天,每天运进18吨,余下的要4天运完。平均每天要运进多少吨?

错解:设平均每天要运进x,根据题意列方程:18×8+4x=250,144+4x=250,

4x=250-144,4x=106,x=26.5。答:平均每天运进26.5吨。

分析:此题错在所设未知数不带单位名称,致使其在等式中代数量意义不明确,从而导致错解。正确的应设平均每天要运进x吨,否则不能认定该等式成立。

五、求得的值带上单位名称的错误

例5:某站运来3车黄瓜和6车芹菜,共重2580千克,每车黄瓜重260千克。每车芹菜重多少千克?

错解:设每车芹菜重x千克,列方程得:260×3+6x=2580,780+6x=2580。6x=2580-780,6x=1800,x=300(千克)。答:每车芹菜重300千克。

分析:此题错在最后求得的x值带上了单位名称,这是不符合解方程的要求的。造成这一错误有两个原因:一方面受算术方法解题的影响;另一方面是对解方程的概念不甚明了。方程是一种等式,方程两边无论是数还是量都是相等的,因此两边的单位名称可同时约去。求方程解的过程就成了数的恒等变形的过程,最后的结果是没有单位名称的,只需要在答句中把单位名称写清楚就行。

-End-

孩子养成良好的数学思维,不仅会体现在数学成绩的提高上,还对孩子将来处理事情的方式,甚至学习能力的提升有着很大的影响。

拥有20年一线数学教学授课经验、出版30多本教辅资料的名师史海平来到有道数学,亲自为孩子们解开轻松取得数学高分的奥秘!

初中数学一元一次方程九大题型解析 - 哔哩哔哩

一、列一元一次方程解应用题的一般步骤

(1)审题:弄清题意

(2)找出等量关系:找出能够表示本题含义的相等关系

(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程

(4)解方程:解所列的方程,求出未知数的值

(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案

‍‍1.市场经济、打折销售问题

(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.

1.某高校共有5个大餐厅和2个小餐厅。经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐。

(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐。

(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由。

解:(1)设1个小餐厅可供y名学生就餐,则1个大餐厅可供(1680-2y)名学生就餐,根据题意得:

解得:y=360(名)

所以如果同时开放7个餐厅,能够供全校的5300名学生就餐。

2.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等。该工艺品每件的进价、标价分别是多少元?

解:设该工艺品每件的进价是元,标价是(45+x)元。依题意,得:

解得:x=155(元)

3.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦则超过部分按基本电价的70%收费。

(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?应交电费是多少元?

解:(1)由题意,得 0.4a+(84-a)×0.40×70%=30.72

答:90千瓦时,交32.40元。

4.某商店开张为吸引顾客,所有商品一律按八折优惠出售,已知某种旅游鞋每双进价为60元,八折出售后,商家所获利润率为40%。问这种鞋的标价是多少元?优惠价是多少?

5.甲乙两件衣服的成本共500元,商店老板为获取利润,决定将家服装按50%的利润定价,乙服装按40%的利润定价,在实际销售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲乙两件服装成本各是多少元?

解:设甲服装成本价为x元,则乙服装的成本价为(50–x)元,根据题意,

6.某商场按定价销售某种电器时,每台获利48元,按定价的9折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等,该电器每台进价、定价各是多少元?

7.甲、乙两种商品的单价之和为100元,因为季节变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两商品的单价之和比原计划之和提高2%,求甲、乙两种商品的原来单价?

解:[x(1-10%)+(100-x)(1+5%)]=100(1+2%)

8.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?

解:设这种服装每件的进价是x元,则:

1.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:

方案一:将蔬菜全部进行粗加工.

方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售.

方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.

解:方案一:获利140×4500=630000(元)

方案二:获利15×6×7500+(140-15×6)×1000=725000(元)

方案三:设精加工x吨,则粗加工(140-x)吨

2.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。

(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?应交电费是多少元?

解:(1)由题意,得0.4a+(84-a)×0.40×70%=30.72

答:九月份共用电90千瓦时,应交电费32.40元.

3.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元。

(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案。

(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?

解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台。

(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程:1500x+2100(50-x)=90000

由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.

(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税

1.为了准备6年后小明上大学的学费20000元,他的父亲现在就参加了教育储蓄,下面有三种教育储蓄方式:

(2)先存入一个三年期,3年后将本息和自动转存一个三年期;

(3)先存入一个一年期的,后将本息和自动转存下一个一年期;你认为哪种教育储蓄方式开始存入的本金比较少?

[分析]这种比较几种方案哪种合理的题目,我们可以分别计算出每种教育储蓄的本金是多少,再进行比较。

解:(1)设存入一个6年的本金是X元,依题意得方程

2.小刚的爸爸前年买了某公司的二年期债券4500元,今年到期,扣除利息税后,共得本利和约4700元,问这种债券的年利率是多少(精确到0.01%).

解:设这种债券的年利率是x,根据题意有

答:这种债券的年利率为3%

3.白云商场购进某种商品的进价是每件8元,销售价是每件10元(销售价与进价的差价2元就是卖出一件商品所获得的利润).现为了扩大销售量,把每件的销售价降低x%出售,但要求卖出一件商品所获得的利润是降价前所获得的利润的90%,则x应等于( )

A.1    B.1.8    C.2    D.10

点拨:根据题意列方程,得(10-8)×90%=10(1-x%)-8,解得x=2,故选C

1.工程问题中的三个量及其关系为:

2.经常在题目中未给出工作总量时,设工作总量为单位1。即完成某项任务的各工作量的和=总工作量=1.

1.一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?

解:设还需要X天完成,依题意,

2.某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?

解:设甲、乙两个龙头齐开x小时。由已知得,甲每小时灌池子的1/2,乙每小时灌池子的1/3。

列方程:1/2×0.5+(1/2+1/3)x=2/3,

3.某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?

解:(X/26+5)×24-60=X,

4.某工程,甲单独完成续20天,乙单独完成续12天,甲乙合干6天后,再由乙继续完成,乙再做几天可以完成全部工程?

解:1-6(1/20+1/12)=(1/12)X

5.已知甲、乙二人合作一项工程,甲25天***完成,乙20天***完成,甲、乙二人合5天后,甲另有事,乙再单独做几天才能完成?

解:1-(1/25+1/20) ×5=(1/20)X

6.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?

解:1-1/6×1/2=(1/6+1/4)X,

1.行程问题中的三个基本量及其关系:

(1)相遇问题: 快行距+慢行距=原距

(2)追及问题: 快行距-慢行距=原距

(3)航行问题: 顺水(风)速度=静水(风)速度+水流(风)速度

抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系

1.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为_____。

解:等量关系  步行时间-乘公交车的时间=3.6小时

列出方程是:X/8-X/40=3.6

2.某人从家里骑自行车到学校。若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?

解:等量关系

⑵ 速度15千米行的时间+15分钟=速度9千米行的时间-15分钟

提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。

方法一:设预定时间为x小/时,则列出方程是:15(x-0.25)=9(x+0.25)

方法二:设从家里到学校有x千米,则列出方程是:

3.一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?

提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。

等量关系:快车行的路程+慢车行的路程=两列火车的车长之和

4.与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。

提醒:将火车车尾视为一个快者,则此题为以车长为提前量的追击问题。

等量关系:

在时间已知的情况下,设速度列路程等式的方程,设路程列速度等式的方程。

解:

⑴行人的速度是:3.6km/时=3600米÷3600秒=1米/秒

骑自行车的人的速度是:10.8km/时=10800米÷3600秒=3米/秒

⑵方法一:设火车的速度是X米/秒,则26×(X-3)=22×(X-1) 解得X=4

方法二:设火车的车长是x米,则(X+22×1)/22=(X+26×3)/26

6.一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。汽车速度是60千米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。出发地到目的地的距离是60千米。

问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)

提醒:此类题相当于环形跑道问题,两者行的总路程为一圈,即步行者行的总路程+汽车行的总路程=60×2

解:设步行者在出发后经过X小时与回头接他们的汽车相遇,则  5X+60(X-1)=60×2

7.某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。

解:方法一:设由A地到B地规定的时间是x小时,则

方法二:设由A、B两地的距离是x千米,则(设路程,列时间等式)

答:A、B两地的距离是24千米。

温馨提醒:当速度已知,设时间,列路程等式;设路程,列时间等式是我们的解题策略。

8.一列火车匀速行驶,经过一条长300m的隧道需要20s的时间。隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。

解析:只要将车尾看作一个行人去分析即可,前者为此人通过300米的隧道再加上一个车长,后者仅为此人通过一个车长。

此题中告诉时间,只需设车长列速度关系,或者是设车速列车长关系等式。

解:方法一:设这列火车的长度是x米,根据题意,得

答:这列火车长300米。

方法二:设这列火车的速度是x米/秒,

答:这列火车长300米。

9.甲、乙两地相距x千米,一列火车原来从甲地到乙地要用15小时,开通高速铁路后,车速平均每小时比原来加快了60千米,因此从甲地到乙地只需要10小时即可到达,列方程得________。

10.两列火车分别行驶在平行的轨道上,其中快车车长为100米,慢车车长150米,已知当两车相向而行时,快车驶过慢车某个窗口所用的时间为5秒。

⑴两车的速度之和及两车相向而行时慢车经过快车某一窗口所用的时间各是多少?

⑵如果两车同向而行,慢车速度为8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需的时间至少是多少秒?

解析:①快车驶过慢车某个窗口时:研究的是慢车窗口的人和快车车尾的人的相遇问题,此时行驶的路程和为快车车长!

②慢车驶过快车某个窗口时:研究的是快车窗口的人和慢车车尾的人的相遇问题,此时行驶的路程和为慢车车长!

③快车从后面追赶慢车时:研究的是快车车尾的人追赶慢车车头的人的追击问题,此时行驶的路程和为两车车长之和!

解:⑴两车的速度之和=100÷5=20(米/秒)

答:至少62.5秒快车从后面追赶上并全部超过慢车。

11.甲、乙两人同时从A地前往相距25.5千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍还快2千米/时,甲先到达B地后,立即由B地返回,在途中遇到乙,这时距他们出发时已过了3小时。求两人的速度。

解:设乙的速度是X千米/时,则

答:甲、乙的速度分别是12千米/时、5千米/时。

12.一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。

解:设船在静水中的速度是X千米/时,则

答:两码头之间的距离是36千米。

13.小明在静水中划船的速度为10千米/时,今往返于某条河,逆水用了9小时,顺水用了6小时,求该河的水流速度。

解:设水流速度为x千米/时,

答:水流速度为2千米/时

14.某船从A码头顺流航行到B码头,然后逆流返行到C码头,共行20小时,已知船在静水中的速度为7.5千米/时,水流的速度为2.5千米/时,若A与C的距离比A与B的距离短40千米,求A与B的距离。

解:设A与B的距离是X千米,(请你按下面的分类画出示意图,来理解所列方程)

答:A与B的距离是120千米或56千米。

1.在6点和7点之间,什么时刻时钟的分针和时针重合?

解析:6:00时分针指向12,时针指向6,此时二针相差180°,在6:00~7:00之间,经过x分钟当二针重合时,时针走了0.5x°分针走了6x°

解:设经过x分钟二针重合,

2.甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地同向出发,几分钟后二人相遇?若背向跑,几分钟后相遇?

提醒:此题为环形跑道上,同时同地同向的追击与相遇问题。

解:①设同时同地同向出发x分钟后二人相遇,则

3.某钟表每小时比标准时间慢3分钟。若在清晨6时30分与准确时间对准,则当天中午该钟表指示时间为12时50分时,准确时间是多少?

解:方法一:设准确时间经过X分钟,则

6:30+6:40=13:10

方法二:设准确时间经过x时,则

此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。

常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变。

1.某粮库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个中的。问每个仓库各有多少粮食?

设第二个仓库存粮X吨,则第一个仓库存粮3X吨,根据题意得

2.一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14)

答:圆柱形水桶的高约为229.3毫米

3.长方体甲的长、宽、高分别为260mm,150mm,325mm,长方体乙的底面积为130×130mm2,又知甲的体积是乙的体积的2.5倍,求乙的高?

(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)则这个三位数表示为:100a+10b+c。然后抓住数字间或新数、原数之间的关系找等量关系列方程。

(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。

1.一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数。

解:设这个三位数十位上的数为X,则百位上的数为X+7,个位上的数是3x

x+7=9,3x=6  答:这个三位数是926

2.一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数。

等量关系:原两位数+36=对调后新两位数

解:设十位上的数字X,则个位上的数是2X,

答:原来的两位数是48。

日历中的规律:横行相邻两数相差1,竖行相邻两数相差7。

1.如果某一年的5月份中,有5个星期五,且它们的日期之和为80,那么这个月的4号是星期几?

设第一个星期五为x号,依题意得:x+x+7+x+14+x+21+x+28=80,5x+70=80,5x+70-70=80-70,5x÷5=10÷5,x=2.因此这个月的4日是星期日答:这个月的4号是星期日

2.下表是2011年12月的日历表,请解答问题:在表中用形如下图的平行四边形框框出4个数,(1)若框出的4个数的和为74,请你通过列方程的办法,求出它分别是哪4天?(2)框出的4个数的和可能是26吗?为什么?

(1)设第一个数是x,则根据平行四边形框框出4个数得其他3天可分别表示为x+1,x+6,x+7,则:x+x+1+x+6+x+7=74,解得:x=15;所以它分别是:15,16,21,22;

(2)设第一个数为x,则4x+14=26,4x=12,x=3,本月3号是周六,由平行四边形框框出4个数,

得出结论:无法构成平行四边形。

文章来源于公众号:初一数学语文英语。

文章推荐:

一元一次方程应用题怎么找等量关系(五年级数学

炒股打新什么意思(股票打新是什么意思?)

501083基金净值(基金净值归一的意思是什么?)

100元人民币换日币多少钱(2016年最新价格100元人民

60008资金流向(山西铁福来瓦斯治理装备制造有限

100万科研经费自己能拿多少(100万元科研经费、每

寒锐钴业值得购买吗(传祺Gs5值得买吗(同竞争车型

手机屏幕lcd和oled哪个好(LCD和OLED屏幕有什么区别

相关常识